Un cadre d’autorégulation pour l’éthique de L’IA : opportunités et défis
Jean-Marie John-Mathews
Publications – Article/chapitre
Nous proposons un outil d’autorégulation pour la conception d’IA qui intègre des mesures sociétales telles que l’équité, l’interprétabilité et la confidentialité. Pour ce faire, nous créons une interface qui permet aux praticiens de l’IA (experts en mégadonnées/data scientists) de choisir visuellement l’algorithme d’apprentissage (Machine Learning/ML) qui correspond le mieux aux préférences éthiques des concepteurs d’IA. En utilisant une méthodologie de conception en design science (science du design), nous testons l’artefact sur des data scientists et montrons que l’interface est facile à utiliser, permet de mieux comprendre les enjeux éthiques de l’IA, génère des débats, rend les algorithmes plus éthiques et est opérationnelle pour la prise de décision. Notre première contribution est de construire un outil de régulation de l’IA qui intègre non seulement les préférences éthiques des utilisateurs, mais aussi les singularités du cas pratique appris par l’algorithme. La méthode est indépendante des cas d’utilisation et des procédures d’apprentissage ML. Notre deuxième contribution est de montrer que les data scientists peuvent choisir librement de sacrifier certaines performances pour atteindre des algorithmes plus éthiques, à condition d’utiliser des outils réglementaires appropriés. Nous fournissons ensuite les conditions dans lesquelles cette approche technique et autorégulatrice peut échouer. Cet article montre comment il est possible de combler le fossé entre les théories et les pratiques en matière d’éthique de l’IA à l’aide d’outils flexibles qui prennent en compte les singularités des cas pratiques.